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Stable propagation of noise-induced synchronous spiking in uncoupled linear neuron arrays is studied
numerically. The chaotic neurons in the unidirectionally coupled linear array are modeled by Hindmarsh-Rose
neurons. Stability analysis shows that the synchronous chaotic spiking can be successfully transmitted to
cortical areas through layered synchronization in the neural network under certain conditions of the network
structure.
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Studies of cooperative behaviors in coupled chaotic oscil-
lators are frequently based on the analysis of the phenom-
enon of chaos synchronization �1�. Different types of syn-
chrony between chaotic oscillators along with the various
mechanism responsible for the onset of such synchronization
have been studied �2�. Recently much attention has been fo-
cused on the synchronization and rhythmic processes in neu-
robiology and physiology �3�, e.g., bursts in different neu-
rons can be synchronized, as analyzed theoretically �4� and
experimentally �5�, if the neurons are either coupled �6� or
driven by a common noise �7�. A model of dynamical encod-
ing and propagating by neural networks with feed-forward
arrangements has been introduced �8�; however, the core is-
sue of the whole process of signal transmission especially the
cooperative transmission in neural system has not been ad-
dressed thus far.

With reference to this issue, we introduce a model built
upon simplicity requirements; namely, we consider linear
and unidirectional interneuron coupling; furthermore, we
take just nearest-neighbor coupling, avoiding architecturally
complicated connections, and those outermost neurons re-
ceive a common Gaussian noise as described in Fig. 1. Un-
der these assumptions we address the phenomenon that sig-
nal propagates synchronously layer by layer along the linear
arrays of chaotic neurons.

To introduce the method and illustrate its possible appli-
cation in neuroscience, we consider a realistic model of co-
operative activity in a population of neurons, where indi-
vidual neuron is described by the Hindmarsh-Rose equa-
tions �9�: ẋ=y−ax3+bx2−z+ I , ẏ=c−dx2−y , ż=r�s�x−x0�
−z�, where x is the membrane potential, y is associated with
the fast current, Na+ or K+, and z with the slow current, for
example, Ca2+. Here a=1.0, b=3.0, c=1.0, d=5.0, s=4.0,
r=0.006, x0=−1.60, and I is the constant stimulus. x, y are
fast variables and z is a slow variable. r is the ratio of fast/
slow time scales. This system can exhibits different kinds of
dynamic behaviors: For sufficiently low values of I�0� I
� I�1��1.32� the neuron is in a stable quiescent state. As I
increases from I�1� to I�2��2.92, there exists a bifurcation to
a low-frequency repetitive firing state consisting of a train of
regularly spaced spikes. Further increase of I�I�2�� I� I�3�

�3.40� leads to a multi-time-scale spike-burst chaotic be-

havior. The system is finally in a high-frequency repetitive
firing state for I� I�3� �9�. Now we consider multiple unidi-
rectionally coupled linear arrays of Hindmarsh-Rose neurons
in the presence of a common noise applied to the outermost
neurons. The motion can be described by the following equa-
tions:

ẋij = yij − aijxij
3 + bijxij

2 − zij + Iij
ext,

ẏij = cij − dijxij
2 − yij ,

żij = rij�sij�xij − xij
0 � − zij� . �1�

Here i=1, . . . ,M is the ith linear array index, and j
=1, . . . ,N is the jth neuron index in the linear arrays.
�aij ,bij ,cij ,dij ,sij ,rij ,xij

0 � are parameters of individual neu-
ron. Iij

ext= I+D� for j=1 �the 1st layer�, and Iij
ext=��xij−1−X�

for j�2 �the jth layer�. The noise � is a Gaussian one with
���t���t−���=����, and D denotes the noise intensity; � is the
coupling strength, and X is the dynamic parameter for stable
propagation of the spikes. It should be noted that
�aij ,bij ,cij ,dij ,sij ,rij ,xij

0 �= �ai�j ,bi�j ,ci�j ,di�j ,si�j ,ri�j ,xi�j
0 �,

i.e., those neurons belong to the same layer are identical,
otherwise, may be different. In our case, for simplicity, we
choose �aij ,bij ,cij ,dij ,sij ,rij ,xij

0 �= �a ,b ,c ,d ,s ,r ,x0�, but we
can get the similar conclusion if those neurons belong to
different layers are different from each other. Because all the
linear arrays are identical and do not interact with one an-
other, we can study the layered synchronization of the neural

FIG. 1. Architecture of the model neural network.
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network in any two �i and i�� of the M linear arrays. The
initial conditions of the membrane potential and ion currents
of each neuron are chosen randomly and independently. The
equations were integrated using the stochastic Euler method
with a time step of 	t=0.01.

It has previously been observed that noise-induced com-
plete synchronization �CS� can be realized in two uncoupled
Hindmarsh-Rose neurons when a common Gaussian noise is
applied to the equation of motion of the x variable �10�. In
order for the stable propagation of the noise-induced syn-
chronization in our model, two points should be stressed:
First, the largest Lyapunov exponent �LLE� 
1 of the differ-

ence equations �̇ij = ��̇ij
x , �̇ij

y , �̇ij
z �= �ẋij − ẋi�j , ẏij − ẏi�j , żij − żi�j�

= ��ij
y −3axj

2�ij
x +2bxj�ij

x −�ij
z +��ij−1

x ,−2dxj�ij
x −�ij

y ,r�s�ij
x −�ij

z ��
should be negative, i.e., �ij�t�= �0,0 ,0� for t→�, which
gives the layered chaotic synchronization in the jth layer.
Here �xj ,yj ,zj� is the jth layer synchronization manifold, and
��ij−1

x =0 for j=1. Second, the parameter X should be care-
fully adjusted in order for the lossless and stable propagation
of information. Now we discuss the stable propagation of
noise-induced chaotic spikes by calculating LLE 
1. Figure

2�a� shows that, for I=3.2, the critical noise intensity Dc
x

�2.25 beyond which the LLE 
1 becomes negative, and the
chaotic neurons in the 1st layer are in complete synchronous
state �see Fig. 2�b��. Figure 3 exhibits the LLE 
1 in �D-I�
parameter space, which shows that when the noise intensity
D�Dc�2.5, the LLE 
1 becomes negative for any value of
I, i.e., the neurons driven by a common noise are in complete
synchronized states. But Dc

x is different for different I. There
is a common characteristic for different values of I, as seen
in Fig. 2�a�, with increasing the noise intensity, the LLE 
1
increases from the value of isolated chaotic neuron, after
reaching a peak, then decreases till to the negative value. So
there is a range of noise intensity in which the value of LLE

1 is larger than the value of isolated chaotic neuron, i.e., the
increase of noise intensity may not always increase the de-
gree of synchronization. This phenomenon is similar to that
in Ref. �11�.

The synchronous chaotic spikes induced by noise transmit
to the 2nd layer according to Eq. �1� with Iij

ext=��xij−1−X�
�j=2�. To ensure the synchronization between neurons of the
2nd layer, we compute the LLE 
1 for X=−2.64 and different
�. We fix the noise intensity D=3.0 to ensure the synchroni-
zation of neurons of the 1st layer. Figure 4�a� shows that the
LLE 
1 becomes negative when the coupling strength 0��
��c

1�0.52 and ���c
2�3.70, i.e., the neurons of the 2nd

layer are in synchronized states. But in the former range, the
coupling strength � is too small to excite large numbers of
spikes, while in the latter range, the � is large enough to
excite many spikes and ensure the synchronization between
the neurons of the 2nd layer simultaneously �see Fig. 4�b��.
To explore the parameter range with negative LLE, we com-
pute the 
1 in the �X-�� parameter space. Figure 5 shows that
there are two separate regions with negative LLE. One re-
gion corresponds to the smaller �, and the other to the larger
�. The latter parameter range makes sense for us because it
ensures synchronous propagation of many spikes from layer
to layer in our neural network.

In neurobiology, the outermost neurons which driven by

FIG. 2. �a� 
1 versus noise intensity D for I=3.2. �b� Time series
of �x1=xi1−xi�1 for different D. Other parameters are given in the
text.

FIG. 3. 
1 in �D-I� parameter space. The dashed line is drawn at
I=3.2, and solid line is drawn at 
1=0. Other parameters are the
same as that in Fig. 2.
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external stimulus can be regarded as sensory neurons. When
the sensory neurons �neurons of the 1st layer� receive the
stimulus �a common Gaussian noise in our case�, they will
generate spikes which transmit to the inner neurons �neurons
of the 2nd layer�, then propagate to the next layer, and so on,
until these spikes reach the cerebral cortex. Figure 6�a�
shows the temporal behaviors of the difference motion �xj
=xij −xi�j �corresponding to fast dynamics� and �zj =zij −zi�j
�corresponding to slow dynamics� for j=20,60,100, respec-
tively. After the transient time interval tuª�xj ��zj��0 for
t� tu and �xj��zj��0 for t� tu, the two neurons of the same
layer are in CS state. But the transient time interval tu in-
creases linearly with increasing layer index j �12�. It should
be noted that the amplitude of �zj is much smaller than that
of �xj �about 1:10 in our case; see Fig. 6�a��. We have com-
puted the finite time LLE 
1 for different layers. The numeri-

cal results are shown in Fig. 6�b�, from which we can see that

1 increases with increasing layer index j. In the computa-
tion we have chosen the finite time t=6000 to exhibit the
different transient time intervals tu for different layers. In the
thermodynamic limit, i.e., j→�, the layered CS will be
maintained under certain conditions as discussed by Aranson
et al. in Ref. �13�.

Another characteristic for the stable propagation of the
chaotic spikes with layered synchronization is its sensitivity
to the symmetry of the dynamic parameters between the lin-
ear arrays. By means of the modification of the auxiliary
system approach �14�, we study the influence of asymmetry
of the coupling constant � on the layered synchronization
�we also studied other kinds of asymmetry, such as r, and got
the similar conclusion, here not shown�. Taking �=5.0 in the
whole neural network, and ��=��1.0+	 j0

� between the j0th

FIG. 4. �a� 
1 versus coupling
strength � for X=−2.64. �b� Time
series of xi2 �solid line�, xi�2 �dot-
ted line�, and �x2=xi2−xi�2 for
different �. The intensity of noise
D=3.0 and other parameters are
the same as that in Fig. 2.
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neuron and the �j0+1�th neuron in one �i or i�� linear array,
we compute the cross-correlation function

S2�x� =
�xij�t�xi�j�t��

��xij
2 �t���xi�j

2 �t���1/2
�j � j0� �2�

for different relative error 	1 �here j0=1� of the coupling
constant �see Fig. 7�. The cross-correlation function S2�x�
=1.0 corresponds to the complete layered synchronization,
and S2�x�=0 corresponds to the complete unsynchronization
of the same layer neurons. Figure 7 shows the S2�x� de-
creases along the linear array till to S2�x��0.1 for 	1�0 and
j→�. This residual correlation S2�x��0.1 does not come
from the correlation but the pulse width d of spikes. If d
=0 then S2�x�=0 for 	1�0 and j→�. S2�x� decreases more
rapidly for larger relative error 	1. We also calculated the
cross-correlation function S2�z� and found that S2�z� is ap-
proximately 1.0 for different relative error 	1. Thus the suc-
cessful synchronous propagation of signal �especially for fast
variable, e.g., x ,y� in the neural network means the symme-
try of the dynamic structure of the network. Another point to
be stressed is that the local noise has the similar role played
by 	 j0

and can destroy the layered CS.
In conclusion, we have introduced the neural network

model as multiple linear arrays of coupling chaotic neurons
which assume a collective state in the presence of a localized
common noise. In this neural network, under certain condi-
tions, the chaotic spikes induced by external noise can propa-
gate stably and synchronously to the cerebral cortex via lay-
ered synchronization along the linear arrays, so that the
precise spike timing is maintained.

We acknowledge support from the NSF of Jiangsu Prov-
ince �No. BK2005062�.

FIG. 5. 
1 in �X-�� parameter space. The dashed line is drawn at
X=−2.64, and solid line is drawn at 
1=0. Other parameters are the
same to that in Fig. 4.

FIG. 6. �a� Temporal behaviors of the difference motion �xj

=xij −xi�j and �zj =zij −zi�j for j=20,60,100, respectively. �b� The
diagram of the finite time LLE 
1 vs the layer index j in the sys-
tems. Here we choose the finite time t=6000, and other parameters
are as follows: D=3.0, I=3.2, X=−2.64, and �=5.0.

FIG. 7. The cross-correlation S2�x� along the linear array for
different relative error 	1. Parameters are the same as those in
Fig. 6.
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